1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
# Last modified on 7 Agu 2019 by Hui Lan @ Jinhua
#DATA.FILE <- '../Data/history/expr/TPM.txt.3130'
DATA.FILE <- '../Data/history/expr/TPM.txt'
TARGET.TF.FILE <- '../Data/information/target_tf.txt'
AGINAME.FILE <- '../Data/information/AGI-to-gene-names_v2.txt'
ONE.TARGET.DIR <- '../Data/history/edges/one_target'
# Make sure we have required files and directory
if (! file.exists(DATA.FILE)) {
stop(sprintf('[wedge.R] Unable to find %s', DATA.FILE))
}
if (! file.exists(TARGET.TF.FILE)) {
stop(sprintf('[wedge.R] Unable to find %s', TARGET.TF.FILE))
}
if (! file.exists(AGINAME.FILE)) {
stop(sprintf('[wedge.R] Unable to find %s', AGINAME.FILE))
}
if (! dir.exists(ONE.TARGET.DIR)) {
stop(sprintf('[wedge.R] Unable to find directory %s', ONE.TARGET.DIR))
}
r.tau <- 0.60
cat(sprintf('Read %s\n', DATA.FILE))
X <- read.table(DATA.FILE, header=TRUE, check.names=FALSE)
all.id <- X$gene_id
X$gene_id <- NULL # remove column gene_id
row.names(X) <- all.id # add row names
all.genes <- rownames(X)
cat(sprintf('Read %s\n', AGINAME.FILE))
#agi <- read.table(AGINAME.FILE, sep='\t', header=FALSE, row.names=1, stringsAsFactors=F) # AGINAME_FILE cannot contain quotes
agi <- read.table(AGINAME.FILE, stringsAsFactors=F) # AGINAME_FILE cannot contain quotes
cat(sprintf('Read %s\n', TARGET.TF.FILE))
target.tf <- read.table(TARGET.TF.FILE, header=FALSE, check.names=FALSE, sep='\t')
total.pair <- dim(target.tf)[1]
###########################################################################
post.translation.4 <- function(x, y) {
mx = mean(x)
index = (x > mx - 0.5) & (x < mx + 0.5)
slope = max(y[index])/mx
v = c(-slope, 1)
xy = as.matrix(cbind(x,y))
z = xy %*% v
index0 = which(z <= 0) # points below the wedge
index1 = which(z > 0) # points above the wedge
index2 = which(x <= 0.1) # x has low value, then y is expected to have low value too
if (length(index2) > 0) {
q = quantile(y[index2], 0.9)
m = mean(y[index2])
} else {
q = 0.0
m = 0.0
}
index3 = which(x < 1)
if (length(index3) > 0) {
m = mean(y[index3])
} else {
m = 0.0
}
# for a scatterplot to be considered a wedge shape, percent>0.90,q < 1 and
# m < slope, disp.x < disp.y
result <- list(below=index0, upper=index1, percent=length(index0)/length(x), q=q, m=m, slope=slope, disp.x=sd(x)/mean(x), disp.y=sd(y)/mean(y))
}
make.data <- function(slope, n) {
x=abs(3.0 + 1*rnorm(n))
y=abs(3.0 + 1*rnorm(n))
v = c(-slope, 1)
xy = as.matrix(cbind(x,y))
z = xy %*% v
index = which(z <= 0)
result <- list(x=x[index], y=y[index])
}
###########################################################################
cat(sprintf('Go through pairs looking for wedge shapes ..\n'))
output.file <- paste('../Data/history/edges/one_target/edges.txt', 'wedge', format(Sys.time(), "%b.%d.%Y.%H%M%S"), sep='.')
f <- file(output.file, 'w')
for (i in 1:total.pair) {
id1 <- as.vector(target.tf[i,2]) # tf
id2 <- as.vector(target.tf[i,1]) # target
all.in <- id1 %in% all.genes & id2 %in% all.genes
if (!all.in) {
next
}
x <- X[id1,]
y <- X[id2,]
x <- log(x+1)
y <- log(y+1)
x <- t(x)
y <- t(y)
na.ratio <- max(sum(is.na(x))/length(x), sum(is.na(y))/length(y))
index <- x < 0.01 | y < 0.01 | na.ratio > 0.5 # make sure very small values are not included
x <- x[!index, 1, drop=FALSE]
y <- y[!index, 1, drop=FALSE]
if (dim(x)[1] < 50) {
next
}
# We will not consider wedge shape if the correlation coefficient is large enough.
if (abs(cor(x, y)) < r.tau) {
result <- post.translation.4(x, y)
if (result$percent > 0.95 & result$q < 0.25 & result$m < 1.0 & result$disp.y > 1.2 * result$disp.x) {
#name1 <- agi[id1,1]
#name2 <- agi[id2,1]
name1 <- agi$V2[which(agi$V1 == id1)]
name2 <- agi$V2[which(agi$V1 == id2)]
max.r <- max(r.tau, result$percent * exp(-max(result$q, result$m)))
curr.date <- gsub('-','',Sys.Date())
loglik <- '-1001.0'
rna.sample <- row.names(x)[result$below] # below the diagonal line
#rna.sample.size <- length(rna.sample)
#rna.sample.2 <- sample(rna.sample, ceiling(rna.sample.size^0.7)) # to save space, keep only a fraction of the rnaseq sample IDs
sub.cond <- paste(rna.sample, collapse=' ')
sub.cond.length <- length(rna.sample)
cond <- as.vector(target.tf[i,3])
result2 <- sprintf('%s %s\t%s %s\t%4.2f\t%s\t%s\t%s\t%s\t%s\t%4.2f\t%s\n', id2, name2, id1, name1, max.r, 'mix', sub.cond.length, cond, loglik, curr.date, max.r, 'wedge')
cat(result2, file=f, sep='')
}
}
}
close(f)
|