1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
"""
Data conversion utility for NetworkX
=====================================
Convert cytoscape.js style graphs from/to NetworkX object.
https://networkx.github.io/
"""
import networkx as nx
# Special Keys
ID = 'id'
NAME = 'name'
DATA = 'data'
ELEMENTS = 'elements'
NODES = 'nodes'
EDGES = 'edges'
SOURCE = 'source'
TARGET = 'target'
DEF_SCALE = 100
def __map_table_data(columns, graph_obj):
data = {}
for col in columns:
if col == 0:
break
data[col] = graph_obj[col]
return data
def __create_node(node, node_id):
new_node = {}
node_columns = node.keys()
data = __map_table_data(node_columns, node)
# Override special keys
data[ID] = str(node_id)
data[NAME] = str(node_id)
if 'position' in node.keys():
position = node['position']
new_node['position'] = position
new_node[DATA] = data
return new_node
def __build_multi_edge(edge_tuple, g):
source = edge_tuple[0]
target = edge_tuple[1]
key = edge_tuple[2]
data = edge_tuple[3]
data['source'] = str(source)
data['target'] = str(target)
data['interaction'] = str(key)
return {DATA: data}
def __build_edge(edge_tuple, g):
source = edge_tuple[0]
target = edge_tuple[1]
data = edge_tuple[2]
data['source'] = str(source)
data['target'] = str(target)
return {DATA: data}
def __build_empty_graph():
return {
DATA: {},
ELEMENTS: {
NODES: [],
EDGES: []
}
}
def from_networkx(g, layout=None, scale=DEF_SCALE):
# Dictionary Object to be converted to Cytoscape.js JSON
cygraph = __build_empty_graph()
if layout is not None:
pos = map(lambda position:
{'x': position[0]*scale, 'y': position[1]*scale},
layout.values())
nodes = g.nodes()
if isinstance(g, nx.MultiDiGraph) or isinstance(g, nx.MultiGraph):
edges = g.edges(data=True, keys=True)
edge_builder = __build_multi_edge
else:
edges = g.edges(data=True)
edge_builder = __build_edge
# Map network table data
cygraph[DATA] = __map_table_data(g.graph.keys(), g.graph)
for i, node_id in enumerate(nodes):
new_node = __create_node(g.node[node_id], node_id)
if layout is not None:
new_node['position'] = pos[i]
cygraph['elements']['nodes'].append(new_node)
for edge in edges:
cygraph['elements']['edges'].append(edge_builder(edge, g))
return cygraph['elements']
def to_networkx(cyjs, directed=True):
"""
Convert Cytoscape.js-style JSON object into NetworkX object.
By default, data will be handles as a directed graph.
"""
if directed:
g = nx.MultiDiGraph()
else:
g = nx.MultiGraph()
network_data = cyjs[DATA]
if network_data is not None:
for key in network_data.keys():
g.graph[key] = network_data[key]
nodes = cyjs[ELEMENTS][NODES]
edges = cyjs[ELEMENTS][EDGES]
for node in nodes:
data = node[DATA]
g.add_node(data[ID], attr_dict=data)
for edge in edges:
data = edge[DATA]
source = data[SOURCE]
target = data[TARGET]
g.add_edge(source, target, attr_dict=data)
return g
|