summaryrefslogtreecommitdiff
path: root/Code/util_networkx.py
blob: b7086100609183d4c92356291ab1112c2a6900ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""
Data conversion utility for NetworkX
=====================================

Convert cytoscape.js style graphs from/to NetworkX object.

https://networkx.github.io/

"""

import networkx as nx

# Special Keys
ID = 'id'
NAME = 'name'
DATA = 'data'
ELEMENTS = 'elements'

NODES = 'nodes'
EDGES = 'edges'

SOURCE = 'source'
TARGET = 'target'

DEF_SCALE = 100


def __map_table_data(columns, graph_obj):
    data = {}
    for col in columns:
        if col == 0:
            break

        data[col] = graph_obj[col]

    return data


def __create_node(node, node_id):
    new_node = {}
    node_columns = node.keys()
    data = __map_table_data(node_columns, node)
    # Override special keys
    data[ID] = str(node_id)
    data[NAME] = str(node_id)

    if 'position' in node.keys():
        position = node['position']
        new_node['position'] = position

    new_node[DATA] = data
    return new_node


def __build_multi_edge(edge_tuple, g):
    source = edge_tuple[0]
    target = edge_tuple[1]
    key = edge_tuple[2]
    data = edge_tuple[3]

    data['source'] = str(source)
    data['target'] = str(target)
    data['interaction'] = str(key)
    return {DATA: data}


def __build_edge(edge_tuple, g):
    source = edge_tuple[0]
    target = edge_tuple[1]
    data = edge_tuple[2]

    data['source'] = str(source)
    data['target'] = str(target)
    return {DATA: data}


def __build_empty_graph():
    return {
        DATA: {},
        ELEMENTS: {
            NODES: [],
            EDGES: []
        }
    }


def from_networkx(g, layout=None, scale=DEF_SCALE):
    # Dictionary Object to be converted to Cytoscape.js JSON
    cygraph = __build_empty_graph()

    if layout is not None:
        pos = map(lambda position:
                  {'x': position[0]*scale, 'y': position[1]*scale},
                  layout.values())

    nodes = g.nodes()
    if isinstance(g, nx.MultiDiGraph) or isinstance(g, nx.MultiGraph):
        edges = g.edges(data=True, keys=True)
        edge_builder = __build_multi_edge
    else:
        edges = g.edges(data=True)
        edge_builder = __build_edge

    # Map network table data
    cygraph[DATA] = __map_table_data(g.graph.keys(), g.graph)

    for i, node_id in enumerate(nodes):
        new_node = __create_node(g.node[node_id], node_id)
        if layout is not None:
            new_node['position'] = pos[i]

        cygraph['elements']['nodes'].append(new_node)

    for edge in edges:
        cygraph['elements']['edges'].append(edge_builder(edge, g))

    return cygraph['elements']


def to_networkx(cyjs, directed=True):
    """
    Convert Cytoscape.js-style JSON object into NetworkX object.

    By default, data will be handles as a directed graph.
    """

    if directed:
        g = nx.MultiDiGraph()
    else:
        g = nx.MultiGraph()

    network_data = cyjs[DATA]
    if network_data is not None:
        for key in network_data.keys():
            g.graph[key] = network_data[key]

    nodes = cyjs[ELEMENTS][NODES]
    edges = cyjs[ELEMENTS][EDGES]

    for node in nodes:
        data = node[DATA]
        g.add_node(data[ID], attr_dict=data)

    for edge in edges:
        data = edge[DATA]
        source = data[SOURCE]
        target = data[TARGET]

        g.add_edge(source, target, attr_dict=data)

    return g