1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
# Usage: python parse_ena_xml.py > rnaseq_info_database.txt
#
# Search in this script for 'd_run', 'd_sample', 'd_experiment' and
# 'd_study', and set their input files. The input files are generated
# by download_ena_metadata.py (except for d_sample). It also
# generates a json file called info_database.json, for displaying
# experimental information in the scatterplot. If the input files are
# for RNA-seq data, rename info_database.json to
# rnaseq_info_database.json and move it to Data/information. Also move
# rnaseq_info_database.txt to Data/information. They are used by
# html_network.py.
#
# Purpose: Get description for RNA-seq data, one for each SRA Run ID.
# Make rnaseq_info_database.txt and rnaseq_info_database.json. Each
# line in rnaseq_info_database.txt contains information for a run id.
#
# NOTE: you might encounter UnicideEncodeError when running the
# program. To avoid that, first type this command:
# export PYTHONIOENCODING=UTF-8.
#
# 22 Feb 2017, slcu, hui
# 12 Apr 2017, slcu, hui
# 20 Apr 2017, slcu, hui
# 30 May 2017, slcu, hui
# 01 Jun 2017, slcu, hui [added a column sample_id]
# 19 Jun 2017, slcu, hui [added SraRunTable_Ath_Tax3702.txt in d_run2. Search d_run2 for how to get SraRunTable_Ath_Tax3702.txt.]
import os, json, re, operator
import xml.etree.ElementTree
import sys
MAX_DESCRIPTION_LENGTH = 600 # max number to characters to keep in json file
def parse_SraRunTable(fname):
d = {}
f = open(fname)
lines = f.readlines()
f.close()
for line in lines:
line = line.strip()
if not line.startswith('#') and not line.startswith('Assay_Type_s') and line.lower().startswith('rna-seq'):
lst = line.split('\t')
acc = lst[17]
if not acc in d:
d[acc] = {}
d[acc]['experiment_id'] = lst[6] if lst[6] != '' else '.'
d[acc]['sample_id'] = (lst[4] + '...' + lst[18] + ' ' + lst[20]) if lst[4] != '' else '.'
d[acc]['study_id'] = lst[19] if lst[19] != '' else '.'
d[acc]['study_id_PRJ'] = lst[3] if lst[3] != '' else '.'
d[acc]['alias'] = lst[11] if lst[11] != '' else '.'
d[acc]['title'] = lst[20] if lst[20] != '' else '.'
return d
def parse_run(fname):
d = {}
root = xml.etree.ElementTree.parse(fname).getroot()
for c in root.findall('RUN'):
acc = c.get('accession')
d[acc] = {}
alias = c.get('alias')
d[acc]['alias'] = alias
experiment = c.find('EXPERIMENT_REF').get('accession')
d[acc]['experiment_id'] = experiment
title = c.find('TITLE').text
d[acc]['title'] = title
d[acc]['study_id'] = '.'
for i in c.findall('./RUN_LINKS/RUN_LINK/XREF_LINK/ID'):
s = i.text
#print(s)
if 'RP' in s: # run project
d[acc]['study_id'] = s
break
d[acc]['sample_id'] = '.'
for i in c.findall('./RUN_LINKS/RUN_LINK/XREF_LINK/ID'):
s = i.text
if 'RS' in s: # run project
d[acc]['sample_id'] = s
break
return d
def parse_study(fname):
d = {}
root = xml.etree.ElementTree.parse(fname).getroot()
for c in root.findall('PROJECT'):
d2 = {}
acc = c.find('./IDENTIFIERS/SECONDARY_ID')
if acc != None:
d2['secondary_id'] = acc.text
else:
d2['secondary_id'] = '.'
d2['primary_id'] = c.get('accession')
desc = c.find('DESCRIPTION')
d2['description'] = 'None'
if desc != None:
d2['description'] = desc.text
title = c.find('TITLE')
d2['title'] = 'None'
if title != None:
d2['title'] = title.text
run_id = ''
for i in c.findall('./PROJECT_LINKS/PROJECT_LINK/XREF_LINK/ID'):
s = i.text
if 'RR' in s:
run_id = s;
break
lst = run_id.split(',')
for x in lst:
lst2 = x.split('-')
if len(lst2) == 1 and lst2[0] != '':
k = lst2[0]
d[k] = d2 # k is run id, such as SRR, ERR or DRR
elif len(lst2) == 2:
ss = lst2[0]
ee = lst2[1]
first_three_letters = ss[0:3]
sz = len(ss) - 3
ss_t = int(ss[3:])
ee_t = int(ee[3:])
for j in range(ss_t, ee_t+1, 1):
k = first_three_letters + str(j).zfill(sz)
d[k] = d2
return d
def parse_sample(fname):
d = {}
root = xml.etree.ElementTree.parse(fname).getroot()
for c in root.findall('SAMPLE'):
d2 = {}
acc = c.find('./IDENTIFIERS/EXTERNAL_ID')
if acc != None:
d2['external_id'] = acc.text
else:
d2['external_id'] = '.'
d2['primary_id'] = c.get('accession')
desc = c.find('DESCRIPTION')
d2['description'] = 'None'
if desc != None and desc.text != None:
d2['description'] = desc.text
title = c.find('TITLE')
d2['title'] = 'None'
if title != None and title.text != None:
d2['title'] = title.text
tissue_type = ''
for i in c.findall('./SAMPLE_ATTRIBUTES/SAMPLE_ATTRIBUTE/VALUE'):
if i != None and i.text != None:
tissue_type += i.text + ' '
d2['tissue'] = tissue_type.strip()
run_id = ''
for i in c.findall('./SAMPLE_LINKS/SAMPLE_LINK/XREF_LINK/ID'):
s = i.text
if 'RR' in s:
run_id = s;
break
lst = run_id.split(',')
for x in lst:
lst2 = x.split('-') # e.g., SRR520490-SRR520491
if len(lst2) == 1 and lst2[0] != '':
k = lst2[0]
d[k] = d2 # k is run id, such as SRR, ERR or DRR
elif len(lst2) == 2:
ss = lst2[0]
ee = lst2[1]
first_three_letters = ss[0:3]
sz = len(ss) - 3
ss_t = int(ss[3:])
ee_t = int(ee[3:])
for j in range(ss_t, ee_t+1, 1):
k = first_three_letters + str(j).zfill(sz)
d[k] = d2
return d
def parse_experiment(fname):
d = {}
root = xml.etree.ElementTree.parse(fname).getroot()
for c in root.findall('EXPERIMENT'):
d2 = {}
d2['primary_id'] = c.get('accession')
title = c.find('TITLE')
d2['title'] = 'None'
if title != None and title.text != None:
d2['title'] = title.text
desc = c.find('./DESIGN/DESIGN_DESCRIPTION')
d2['description'] = 'None'
if desc != None and desc.text != None:
d2['description'] = desc.text
run_id = ''
for i in c.findall('./EXPERIMENT_LINKS/EXPERIMENT_LINK/XREF_LINK/ID'):
s = i.text
if 'RR' in s:
run_id = s;
break
lst = run_id.split(',')
for x in lst:
lst2 = x.split('-') # e.g., SRR520490-SRR520491
if len(lst2) == 1 and lst2[0] != '':
k = lst2[0]
d[k] = d2 # k is run id, such as SRR, ERR or DRR
elif len(lst2) == 2:
ss = lst2[0]
ee = lst2[1]
first_three_letters = ss[0:3]
sz = len(ss) - 3
ss_t = int(ss[3:])
ee_t = int(ee[3:])
for j in range(ss_t, ee_t+1, 1):
k = first_three_letters + str(j).zfill(sz)
d[k] = d2
return d
def get_singular_form(w):
d = {'seedlings':'seedling', 'roots':'root', 'leaves':'leaf', 'flowers':'flower', 'floral':'flower', 'shoots':'shoot', 'apices':'apex', 'stems':'stem', 'seeds':'seed', 'petals':'petals', 'sepals':'sepal', 'embryos':'embryo', 'embryonic':'embryo', 'cotyledons':'cotyledon', 'hairs':'hair', 'meristems':'meristem', 'epidermal':'epidermis', 'apical':'apex', 'buds':'bud', 'vacuoles':'vacuole', 'vacuolar':'vacuole', 'tips':'tip', 'pollens':'pollen', 'hypocotyls':'hypocotyl', 'tubes':'tube', 'stomatal':'stomata', 'ovule':'ovules', 'pistils':'pistil', 'anthers':'anther', 'carpels':'carpel', 'pedicle':'pedicel', 'vascular':'vasculum'}
if w in d:
return d[w]
return w
def get_tissue(s):
''' Extract tissue name from s. s may contain several tissue names, return them ordered by frequency. '''
lst = ['seedling', 'seedlings', 'root', 'roots', 'leaves', 'leaf', 'flower', 'flowers', 'floral', 'shoot', 'shoots', 'apex', 'apices', 'stamen', 'stem', 'stems', 'seed', 'seeds', 'petal', 'petals', 'sepal', 'sepals', 'embryo', 'embryos', 'embryonic', 'cotyledon', 'cotyledons', 'xylem', 'hair', 'hairs', 'phloem', 'pericycle', 'primordia', 'columella', 'cortex', 'meristem', 'meristems', 'cambium', 'epidermis', 'epidermal', 'phloem', 'mesophyll', 'apical', 'lateral', 'intercalary', 'parenchyma', 'collenchyma', 'sclerenchyma', 'bud', 'buds', 'endosperm', 'colletotrichum', 'stele', 'vacuoles', 'vacuole', 'vacuolar', 'tip', 'tips', 'pollen', 'hypocotyl', 'hypocotyls', 'tube', 'tubes', 'basal', 'stomatal', 'stomata', 'surface', 'progeny', 'ovules', 'carpel', 'carpels', 'gynoecium', 'pistil', 'pistils', 'anthers', 'anther', 'endodermis', 'dicotyledonous', 'hyphae', 'adabaxial', 'axial', 'cauline', 'rosette', 'pedicle', 'pedicel', 'inflorescence', 'petiole', 'lamina', 'vascular', 'bundle', 'sheath'] # possible tissue names, lower case. refer to /home/hui/network/test/rnaseq.word.count.txt for distinct words in rna seq. rnaseq.word.count.txt is generated by /home/hui/network/test/count_word.py
# build a count dictionary, where key is a word
d = {}
s = s.lower()
wlst = re.sub("[^\w]", " ", s).split() # a list of words in s. http://stackoverflow.com/questions/6181763/converting-a-string-to-a-list-of-words
for w in wlst:
if w in lst:
w2 = get_singular_form(w)
if not w2 in d:
d[w2] = 1
else:
d[w2] += 1
if len(d) == 0:
return 'unknown'
tlst = sorted(d.items(), key=operator.itemgetter(1), reverse=True)
result = ''
for t in tlst:
result += '%s(%d);' % (t[0], t[1])
return result.rstrip(';')
## main
# ENA xml meta files do not differentiate between different types of Seq, but are organised by RUN, STUDY, EXPERIMENT. So each
# of the following function is for each type of xml file.
d_sample = parse_sample('../Data/information/ena_sample.xml') # SAMPLE. We can download RUN, STUDY, EXPERIMENT using download_ena_metadata.py, but not for SAMPLE (weired). So we need manually download ena_sample.xml. Enter http://www.ebi.ac.uk/ena/data/search?query=arabidopsis%20thaliana, click Sample (31,042) in the left panel of the displayed page, then click XML link in the right panel. The XML link is very small, so take time to find it or search for XML.
d_run = parse_run('../Data/information/ena_rnaseq_read_run.xml') # RUN
d_run2 = parse_SraRunTable('../Data/information/SraRunTable_Ath_Tax3702.txt') # Go to https://www.ncbi.nlm.nih.gov/sra. Type (arabidopsis thaliana) AND "Arabidopsis thaliana"[orgn:__txid3702]. Click "Send results to Run selector". Click "RunInfo Table". Save SraRunTable.txt
d_study = parse_study('../Data/information/ena_rnaseq_read_study.xml') # STUDY
d_experiment = parse_experiment('../Data/information/ena_rnaseq_read_experiment.xml') # EXPERIMENT
cmd = 'export PYTHONIOENCODING=UTF-8' # since xml files contains non-ascii characters, use this command to avoid encoding error during redirection
os.system(cmd)
print('%s' % ('\t'.join(['run_id', 'sample_id', 'experiment_id', 'study_id', 'study_id_PRJ', 'title', 'alias', 'description']))) # description comes from three sources, STUDY, SAMPLE and EXPERIMENT
d_run_keys = d_run.keys()
d_run_keys.extend(d_run2.keys())
d_run_keys = list(set(d_run_keys))
for k in sorted(d_run_keys):
lst = []
lst.append(k)
if k in d_run:
if k in d_sample:
if d_sample[k]['external_id'] != '.':
lst.append(d_sample[k]['external_id'] + '...' + d_sample[k]['tissue'])
else:
lst.append(d_sample[k]['primary_id'] + '...' + d_sample[k]['tissue'])
else:
lst.append('.')
lst.append( d_run[k]['experiment_id'])
lst.append( d_run[k]['study_id'] )
if k in d_study:
lst.append( d_study[k]['primary_id'] )
else:
lst.append( '.' )
lst.append( d_run[k]['title'] )
lst.append( d_run[k]['alias'] )
s = '' # description string
if k in d_study:
s += ' <br><br>[Study title] ' + d_study[k]['title'] + ' <br><br>[Study description] ' + d_study[k]['description'] # <br> is used for breaking lines in html
if k in d_sample:
s += ' <br><br>[Sample title] ' + d_sample[k]['title'] + ' <br><br>[Sample description] ' + d_sample[k]['description']
if k in d_experiment:
s += ' <br><br>[Experiment title] ' + d_experiment[k]['title'] + ' <br><br>[Experiment description] ' + d_experiment[k]['description']
if s == '':
s = '.'
lst.append(s)
elif k in d_run2:
lst.append(d_run2[k]['sample_id'])
lst.append(d_run2[k]['experiment_id'])
lst.append(d_run2[k]['study_id'])
lst.append(d_run2[k]['study_id_PRJ'])
lst.append(d_run2[k]['title'])
lst.append(d_run2[k]['alias'])
lst.append('.')
print('%s' % ('\t'.join(lst)))
# make a json file as well. this file is used to display rna-seq information in scatterplots.
json_dict = {}
for k in sorted(d_run_keys):
if k in d_run:
s = 'Title: ' + d_run[k]['title'] + '. Alias: ' + d_run[k]['alias'] + '. More info:'
if k in d_study:
s += ' ' + d_study[k]['title'] + ' ' + d_study[k]['description']
if k in d_sample:
s += ' ' + d_sample[k]['title'] + ' ' + d_sample[k]['description']
if k in d_experiment:
s += ' ' + d_experiment[k]['title'] + ' ' + d_experiment[k]['description']
s = s.strip()
d = {}
d['tissue'] = get_tissue(s)
d['detail'] = s[0:min(MAX_DESCRIPTION_LENGTH, len(s))] + ' ...'
elif k in d_run2:
s = d_run2[k]['title'] + ' ' + d_run2[k]['alias']
s = s.strip()
d = {}
d['tissue'] = get_tissue(s)
d['detail'] = s[0:min(MAX_DESCRIPTION_LENGTH, len(s))] + ' ...'
json_dict[k] = d
fname = '../Data/information/rnaseq_info_database.json'
with open(fname, 'w') as f:
json.dump(json_dict, f, indent=4)
#sys.stderr.write('Check %s. Use this file to display RNA-seq information in the scatterplots. Copy it to Data/information and rename it to rnaseq_info_database.json.\n' % (fname))
|