1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
|
# Usage: python create_edges4.py parameter_for_net.txt
# Purpose:
# This script will generate a few WORK20170328_1026_AGI_one_K2/3.R scripts, each for a target gene. Treat each target separately and at the same, to speed things up.
# The results will be saved as edges.txt.AT2G40300.Apr.04.2017.11:45:30.k3, where AT3G12580 is gene id, and k3 means K=3 in Mixture of Regressions.
# The edges.txt files will be merged together later by update_network.py.
# Make it faster by handling each target separately.
# Make memory footprint smaller by spliting TPM.txt into small json files (in JSON_DIR), and converting binding.txt to target_tf.txt (in target_tf_fname) first.
# So we only load necessary gene expression vectors each time. So we don't need to load the big matrices, TPM.txt and binding.txt.
#
# 7 Mar 2017, slcu, hui
# Last modified 23 Mar 2017, slcu, hui
# Last modified 23 Mar 2017, slcu, hui. Check edges.txt to determine update.
import sys, os, operator, itertools
from datetime import datetime
import time
import json
import subprocess
from geneid2name import make_gene_name_AGI_map_dict
from param4net import make_global_param_dict
EDGE_FILE = '../Data/history/edges/edges.txt' # recent, merged edges from various sources
EDGE_DIR = '../Data/history/edges/one_target' # a directory for storing all edge files generated by this script, one for each target gene
TIME_INTERVAL = 2 # wait 5 seconds before launching a R Rscript
MAX_PROCESS = 10 # CHANGE this to a larger number if you have many CPUs
AVERAGE_LIKELIHOOD_TAU = -0.5 # a value betweeo -0.1 to -998. must be negative, lower this value make less effort in creating brand-new edges.
EDGE_AGE = 30 # if an edge's age is less than 30 days, don't need to update it.
####################################
DATA_SYMBOL = '@'
####################################
def get_gene_list(fname):
result = []
f = open(fname)
for line in f:
line = line.strip()
lst = line.split()
result.append(lst[0])
f.close()
return result
def get_ordered_gene_list(fname):
gene_list = get_gene_list(fname)
d = {}
if not os.path.exists(EDGE_FILE):
return gene_list
f = open(EDGE_FILE)
lines = f.readlines()
f.close()
for line in lines:
line = line.strip()
lst = line.split('\t')
target = lst[0].split()[0]
tf = lst[1].split()[0]
if not target in d:
d[target] = 1
else:
d[target] += 1
result_gene_lst = []
for t in sorted(d.items(), key=operator.itemgetter(1)): # targets with fewer edges will be on the top
g = t[0]
if g in gene_list:
result_gene_lst.append(g)
return result_gene_lst
def make_tf_dict(fname):
d = {}
f = open(fname)
for line in f:
line = line.strip()
lst = line.split('\t')
target = lst[0]
tf = lst[1]
cond = lst[2]
if not target in d:
d[target] = {tf:cond}
else:
d[target][tf] = cond
f.close()
return d
def make_target_dict(fname):
d = {}
f = open(fname)
for line in f:
line = line.strip()
lst = line.split('\t')
target = lst[0]
tf = lst[1]
cond = lst[2]
if not tf in d:
d[tf] = {target:cond}
else:
d[tf][target] = cond
f.close()
return d
def not_bad_line(s):
if s.strip() == '':
return False
if 'WARNING' in s:
return False
if 'number' in s:
return False
if 'Need' in s:
return False
if 'Error' in s:
return False
if 'Too' in s:
return False
if not s.startswith('AT'):
return False
return True
def make_edge_dict(fname):
d = {}
if not os.path.exists(fname):
return d
f = open(fname)
for line in f:
line = line.strip()
if not_bad_line(line):
lst = line.split('\t')
target_id = lst[0].split()[0]
tf_id = lst[1].split()[0]
date = '20161201'
num_rcond = len(lst[4].split())
avg_loglik = -999 # very low likelihood
loglik = lst[6]
if loglik != '.':
if '=' in loglik:
avg_loglik = float(loglik.split('=')[1])/num_rcond
else:
avg_loglik = float(loglik)/num_rcond
if len(lst) == 8:
date = lst[7]
if not tf_id in d:
d[tf_id] = {target_id:{'date':date, 'loglikelihood':avg_loglik}}
else:
d[tf_id][target_id] = {'date':date, 'loglikelihood':avg_loglik}
f.close()
return d
def make_r_script(fname, target, tf_dict, abs_jsonTPM_dir, num_component, edge_dict):
head = 'k.lst <- c(%d)\n' % (num_component)
head += 'target <- \'%s\'\n' % (target)
head += 'id2 <- target\n'
tfs = ''
conds = ''
recent_edge = ''
curr_time = datetime.now().strftime('%Y%m%d')
for k in tf_dict.keys(): # k is tf
tfs += '\'%s\',' % (k)
conds += '\'%s\',' % (tf_dict[k])
if k in edge_dict and target in edge_dict[k] and (int(curr_time) - int(edge_dict[k][target]['date']) <= EDGE_AGE or edge_dict[k][target]['loglikelihood'] >= AVERAGE_LIKELIHOOD_TAU): # recent and good
recent_edge += '%d,' % (1)
else:
recent_edge += '%d,' % (0)
head += 'tfs <- c(' + tfs.rstrip(',') + ')\n'
head += 'conditions <- c(' + conds.rstrip(',') + ')\n'
head += 'recent.edge <- c(' + recent_edge.rstrip(',') + ')\n'
head += 'jsonTPM.dir <- \'%s\'\n' % (abs_jsonTPM_dir)
head += 'AGINAME_FILE <- \'%s\'\n' % (os.path.abspath(GENE_ID_TO_GENE_NAME))
body = '''
post.translation <- function(x, y) {
mean.x <- mean(x)
sd.x <- sd(x)
index <- x > mean.x - sd.x & x < mean.x + sd.x
sd.y <- sd(y[index])
result <- list(value=ifelse(mean.x < 2.0, 0.0, (mean.x/max(x)) * sd.y * sum(index)/length(index)), index=which(index==T), percent=sum(index)/length(index))
}
post.translation.2 <- function(x, y) {
# x is consititutively high while y varies a lot
mean.x <- mean(x)
sd.x <- max(sd(x), 1) # a number above 1
index <- x > mean.x - sd.x & x < mean.x + sd.x # points within the window +/- sd.x
sd.y <- quantile(y[index],0.85)-quantile(y[index],0.15) # dispersion of y within the window
sd.y.2 <- quantile(y,0.85)-quantile(y,0.15) # dispersion of all y
v.disp <- sd.y/max(1, sd.y.2) # how disperse y is within the windown, a number between 0 and 1
# value measure dispersion of y and percent of points within a window
result <- list(value=ifelse(mean.x < 2.0, 0.0, v.disp * sum(index)/length(index)), index=which(index==T), percent=sum(index)/length(index))
}
post.translation.3 <- function(x, y) {
# x is consititutively high while y varies a lot
mean.x <- mean(x)
upper.percentile <- 0.85 # used for computing vertical dispersion
lowest.n <- 3 # number of points with lowest x values
min.mean.x <- max(2.0, quantile(x, 0.25)) # mean of x must be greater than this value
sd.x <- min(sd(x), 1) # a number between 0 and 1
index <- x > mean.x - sd.x & x < mean.x + sd.x # points within the window +/- sd.x
sd.y <- quantile(y[index],upper.percentile)-quantile(y[index],1-upper.percentile) # dispersion of y within the window
sd.y.2 <- quantile(y,upper.percentile)-quantile(y,1-upper.percentile) # dispersion of all y
v.disp <- sd.y/max(1, sd.y.2) # how disperse y is within the window, a number between 0 and 1
rst <- sort(x, index.return=T)
top.n <- sum(rst$x < 1)
top.n <- max(1, min(top.n, lowest.n))
small.y <- min(mean(y[rst$ix[1:top.n]]), mean(y[x<1])) # use the smaller value
small.y <- ifelse(is.nan(small.y)==T, 999, small.y)
# value measure dispersion of y and percent of points within a window
result <- list(valid=small.y, value=ifelse(mean.x < min.mean.x, 0.0, v.disp * sum(index)/length(index)), index=which(index==T), percent=sum(index)/length(index))
}
in.component <- function(posterior, k) {
# posterior is an Nxk matrix, each row is a data points, and each col is prob belonging to a component
p = posterior[,k]
n = length(p)
index <- rep(F,n)
for (i in 1:n) {
if (p[i] > runif(1)) {
index[i] = T
}
}
result <- index
}
####### Read data #########################################
CORR_THRESHOLD <- 0.7
agi <- read.table(AGINAME_FILE, sep='\\t', header=FALSE, row.names=1, stringsAsFactors=F) # AGINAME_FILE cannot contain quotes
#######################################################
library(mixtools)
library(rjson)
name2 <- agi[id2,1]
result <- ''
for (i in 1:length(tfs)) {
if (recent.edge[i] == 1) {
next
}
curr.date <- gsub('-','',Sys.Date())
id1 <- tfs[i]
name1 <- agi[id1,1]
cond <- conditions[i]
file.x <- paste(jsonTPM.dir, paste(id1, '.json', sep=''), sep='/')
if (!file.exists(file.x)) { next }
x <- as.data.frame(fromJSON(file = file.x))
x <- log(x+1)
rcond.x <- names(x)
x <- as.vector(t(x)) # convert it to a vector
file.y <- paste(jsonTPM.dir, paste(id2, '.json', sep=''), sep='/')
if (!file.exists(file.y)) { break }
y <- as.data.frame(fromJSON(file = file.y))
y <- log(y+1)
rcond.y <- names(y)
y <- as.vector(t(y)) # convert it to a vector
rna.sample.id <- rcond.x
if (all(rcond.x == rcond.y) == FALSE | id1 == id2) { # if the IDs in two json files do not match, or target is the same as tf, then ignore
next
}
MIN_SIZE <- min(100, max(10, ceiling(0.5 * length(x))))
index <- x < 0.01 | y < 0.01 # don't include data that is too small
x <- x[!index]
y <- y[!index]
if (length(x) < MIN_SIZE) {
next
}
r <- cor(x, y)
if (abs(r) >= CORR_THRESHOLD) {
#s = sprintf('%s %s\\t%s %s\\t%4.2f\\t%s\\t%s\\t%s\\t%s\\t%s\\n', id2, name2, id1, name1, r, 'all', '.', cond, '.', curr.date)
#result <- paste(result, s, sep='')
next # a good correlation is found using all experiments, so not necessary to look further
}
rna.sample.id <- rna.sample.id[!index] # this step is important to make the following index work
pos_r_max <- -2
pos_r_N <- 0
pos_r_index <- c()
pos_r_loglik <- -100000000
neg_r_max <- 2
neg_r_N <- 0
neg_r_index <- c()
neg_r_loglik <- -100000000
for (k in k.lst) {
em.out <- regmixEM(y, x, maxit=150, epsilon=1e-04, k=k)
for (j in seq(1,k,1)) {
index <- in.component(em.out$posterior, j)
size <- sum(index)
r <- cor(em.out$x[index,2], em.out$y[index])
if (!is.na(r) && r >= CORR_THRESHOLD && size >= MIN_SIZE && r > pos_r_max && size > pos_r_N) {
pos_r_max <- r
pos_r_N <- size
pos_r_index <- index
pos_r_loglik <- em.out$loglik
}
if (!is.na(r) && r <= -CORR_THRESHOLD && size >= MIN_SIZE && r < neg_r_max && size > neg_r_N) {
neg_r_max <- r
neg_r_N <- size
neg_r_index <- index
neg_r_loglik <- em.out$loglik
}
}
}
hit <- 0
if (pos_r_max > 0) { # has a good positive correlation
sub.cond <- paste(rna.sample.id[pos_r_index], collapse=' ')
s = sprintf('%s %s\\t%s %s\\t%4.2f\\t%s\\t%s\\t%s\\t%4.2f\\t%s\\n', id2, name2, id1, name1, pos_r_max, 'mix', sub.cond, cond, pos_r_loglik, curr.date)
result <- paste(result, s, sep='')
hit <- hit + 1
}
if (neg_r_max < 0) { # has a good negative correlation
sub.cond <- paste(rna.sample.id[neg_r_index], collapse=' ')
s = sprintf('%s %s\\t%s %s\\t%4.2f\\t%s\\t%s\\t%s\\t%4.2f\\t%s\\n', id2, name2, id1, name1, neg_r_max, 'mix', sub.cond, cond, neg_r_loglik, curr.date)
result <- paste(result, s, sep='')
hit <- hit + 1
}
if (hit == 0) {
t <- post.translation.3(x, y)
post.r <- t$percent
if (t$valid < quantile(y,0.25) & t$value > 0.69 & post.r >= 0.70 & length(t$index) > MIN_SIZE) {
sub.cond <- paste(rna.sample.id[t$index], collapse=' ')
s = sprintf('%s %s\\t%s %s\\t%4.2f\\t%s\\t%s\\t%s\\t%s\\t%s\\n', id2, name2, id1, name1, post.r, 'mix', sub.cond, cond, '.', curr.date)
result <- paste(result, s, sep='')
}
}
}
'''
tail = '\n'
tail += 'output.file <- paste(\'%s/edges.txt\', id2, format(Sys.time(), \'%%b.%%d.%%Y.%%X\'), \'k%d\', sep=\'.\')\n' % (EDGE_DIR, num_component)
tail += 'if (result != \'\') cat(result, file=output.file, sep=\'\')\n'
f = open(fname, 'w')
content = head + body + tail
f.write('\n'.join([line.lstrip('\t').rstrip() for line in content.split('\n')]))
f.close()
return fname
def number_of_running_process(lst):
''' get number of running processes (with CPU usage greater than 0) '''
count = 0
for x in lst:
x = x.strip()
if x != '':
count += 1 if x.split()[2] > '0.0' else 0 # CPU usage great than 0.0
return count
def wait_a_moment(n, prefix):
''' if there are more than n work_on...R scripts running, wait... '''
time.sleep(TIME_INTERVAL)
ps = subprocess.Popen('ps aux | grep %s' % (prefix), shell=True, stdout=subprocess.PIPE) # CHANGE
num_proc = number_of_running_process(ps.communicate()[0].split('\n'))
while (num_proc > n):
#print('number of running processes %d' % (len(process_lst)))
time.sleep(TIME_INTERVAL)
ps = subprocess.Popen('ps aux | grep %s' % (prefix), shell=True, stdout=subprocess.PIPE)
process_lst = ps.communicate()[0].split('\n')
num_proc = number_of_running_process(process_lst)
def establish_edges(jsonTPM_dir, d, d2, glb_param_dict, rprefix, edge_dict):
'''
jsonTPM_dir -- contain gene expression json files, one for each gene
d - binding dictionary {target:{tf1:c1, tf2:c2}, ... }, c1 c2 are strings of conditions
d2 - binding dictionary {tf:{target1:c1, target2:c2}, ...}, c1 c2 are strings of conditions
'''
gene_lst = get_ordered_gene_list(glb_param_dict['GENE_LIST']) # targets with fewer edges will get higher priority. For example, those targets never having an edge will be treated first
high_gene_lst = glb_param_dict['HIGH_PRIORITY_GENE'].split() # high priority genes CHANGE
if not os.path.isdir(EDGE_DIR):
os.makedirs(EDGE_DIR)
# make a list of targets, putting high-priority target in the beginning
final_gene_lst = high_gene_lst
for x in gene_lst:
if not x in high_gene_lst:
final_gene_lst.append(x)
# process each target. First consider all TFs of the target (if any). then consider the target's targets (if any).
for target in final_gene_lst: # high priority genes are processed first
if target in d: # target g is in binding dictionary d
tf_dict = d[target] # a dictionary of upstream genes, in the form of {tf1:c1, tf2:c2}
if target in d2:
target_dict = d2[target] # a dictionary downstream genes, in the form of {target1:c1, target2:c2}
else:
target_dict = {}
if len(tf_dict) > 0: # the target has TFs (upstream genes)
r_file = '../Data/temp/%s_%s_K%d.R' % (rprefix, target, 2) # k is 2
fname = make_r_script(r_file, target, tf_dict, jsonTPM_dir, 2, edge_dict)
cmd = 'Rscript %s &' % (r_file) # run the Rscript in background
os.system(cmd) # UNCOMMENT ME
r_file = '../Data/temp/%s_%s_K%d.R' % (rprefix, target, 3) # k is 3
fname = make_r_script(r_file, target, tf_dict, jsonTPM_dir, 3, edge_dict)
cmd = 'Rscript %s &' % (r_file) # run the Rscript in background
os.system(cmd) # UNCOMMENT ME
wait_a_moment(MAX_PROCESS, rprefix) # make sure there are not too many R process running in the same time. If too many, wait. MAX_PROCESS sets the limit.
if len(target_dict) > 0: # the target has targets
count = 0
for k in target_dict:
successor = k # successos is target's target
tf_dict2 = {target:target_dict[k]} # now target becomes TF, and its successor becomes targets
r_file = '../Data/temp/%s_%s_one_K%d.R' % (rprefix, successor, 2) # k is 2, one means consider one edge each time.
fname = make_r_script(r_file, successor, tf_dict2, jsonTPM_dir, 2, edge_dict)
cmd = 'Rscript %s &' % (r_file) # run the Rscript in background
os.system(cmd)
r_file = '../Data/temp/%s_%s_one_K%d.R' % (rprefix, successor, 3) # k is 3
fname = make_r_script(r_file, successor, tf_dict2, jsonTPM_dir, 3, edge_dict)
cmd = 'Rscript %s &' % (r_file) # run the Rscript in background
os.system(cmd)
count = count + 1
if count % MAX_PROCESS == 0:
wait_a_moment(MAX_PROCESS, rprefix) # make sure there are not too many R process running in the same time. If too many, wait. MAX_PROCESS sets the limit.
## main
param_file = sys.argv[1] # a single prameter file for building network, parameter_for_net.txt, in Data/parameter/
glb_param_dict = make_global_param_dict(param_file)
GENE_ID_TO_GENE_NAME = glb_param_dict['GENE_ID_AND_GENE_NAME']
agi2name_dict = make_gene_name_AGI_map_dict(GENE_ID_TO_GENE_NAME)# for gene names
curr_time = datetime.now().strftime('%Y%m%d_%H%M%S')
#print('Make target tf using binding.txt')
#if os.path.exists('../Data/information/target_tf.txt'):
# cmd = 'cp ../Data/information/target_tf.txt ../Data/information/target_tf.txt.%s' % (curr_time)
# os.system(cmd)
target_tf_fname = '../Data/information/target_tf.txt.%s' % (curr_time)
cmd = 'python make_target_tf.py %s > %s' % (param_file, target_tf_fname) # make target_tf.txt CHANGE better to make a temperory copy for this program
os.system(cmd)
#print('Make jsonTPM ...') # CHANGE
cmd = 'python TPM2JSON.py %s' % (param_file) # make jsonTPM directory. The TPM values are not log-transformed.
os.system(cmd)
JSON_DIR = '../Data/history/expr/jsonTPM_%s' % (curr_time) # for each TPM.txt, there should be a unique jsonTPM directory.
cmd = 'mv ../Data/history/expr/jsonTPM %s' % (JSON_DIR)
os.system(cmd)
#JSON_DIR = '../Data/history/expr/jsonTPM_20170424_154323'
#target_tf_fname = '../Data/information/target_tf.txt.20170424_154323'
#print('Establish edges')
big_tf_dict = make_tf_dict(target_tf_fname) # key is target
big_target_dict = make_target_dict(target_tf_fname) # key is tf
rscript_prefix = 'Work' + datetime.now().strftime('%Y%m%d%H%M') # each R script's name starts with WORK followed by time
edge_dict = make_edge_dict(EDGE_FILE)
establish_edges(os.path.abspath(JSON_DIR), big_tf_dict, big_target_dict, glb_param_dict, rscript_prefix, edge_dict)
|