summaryrefslogtreecommitdiff
path: root/Code/slice_TPM_to_JSON.py
diff options
context:
space:
mode:
authorHui Lan <lanhui@zjnu.edu.cn>2019-12-04 19:03:19 +0800
committerHui Lan <lanhui@zjnu.edu.cn>2019-12-04 19:03:19 +0800
commit97fdefab064f63642fa3ece05b807d29b459df31 (patch)
treea058530023224f3e35b1783996f3530c80c04bc5 /Code/slice_TPM_to_JSON.py
brain: add python and R code to local repository.
Diffstat (limited to 'Code/slice_TPM_to_JSON.py')
-rw-r--r--Code/slice_TPM_to_JSON.py164
1 files changed, 164 insertions, 0 deletions
diff --git a/Code/slice_TPM_to_JSON.py b/Code/slice_TPM_to_JSON.py
new file mode 100644
index 0000000..e597b78
--- /dev/null
+++ b/Code/slice_TPM_to_JSON.py
@@ -0,0 +1,164 @@
+# Usage: python slice_TPM_to_JSON.py parameter_for_net.txt
+#
+# Purpose: Given the matrix TPM.txt, make logarithmised gene
+# expression in json format for each gene. Put the results in
+# JSON_DIR. The results are used for displaying scatterplots in
+# Webapp.
+#
+# Last modified 24 Apr 2017, slcu, hui [use r to do the job, faster]
+
+import sys, os, operator, itertools
+import numpy as np
+import json
+
+JSON_DIR = '../Data/history/expr/json' # contain json for all genes, one json file for each gene. Each json file has the following format {"R0ERR046550XXX": 2.8148097376737438, "R0ERR031542XXX": 2.5193080765053328, ...}
+
+GLB_PARAM_SYMBOL = '%%'
+DATA_SYMBOL = '@'
+
+# read expression TPM
+def read_matrix_data(fname):
+ '''
+ fname - a file, first line is head, first column is row name.
+ '''
+
+ lineno = 0
+ colid = []
+ rowid = []
+ d = {} # {gene1:{cond1:val1, cond2:val2, ...}, gene2: {...}, ...}
+ d2 = {} # {cond1:{gene1:val1, gene2:val2, ...}, cond2: {...}, ...}
+ d3 = {} # {gene1: [], gene2: [], ...}
+ d4 = {} # {cond1:[], cond2:[], ...}
+
+ f = open(fname)
+ lines = f.readlines()
+ f.close()
+
+ head_line = lines[0].strip()
+ lst = head_line.split()
+ colid = lst[1:]
+
+ for c in colid:
+ d2[c] = {}
+ d4[c] = []
+
+ for line in lines[1:]:
+ line = line.strip()
+ lst = line.split()
+ g = lst[0]
+ rowid.append(g)
+ d[g] = {}
+ levels = lst[1:]
+ if len(levels) != len(colid):
+ print('Incomplete columns at row %s' % (g))
+ sys.exit()
+
+ d3[g] = []
+ for i in range(len(colid)):
+ c = colid[i]
+ d[g][c] = float(levels[i])
+ d2[c][g] = float(levels[i])
+ d3[g].append(float(levels[i]))
+ d4[c].append(float(levels[i]))
+ lineno += 1
+
+ d_return = {}
+ d_return['xy'] = d # first gene, then condition
+ d_return['yx'] = d2 # first condition, then gene
+ d_return['xx'] = d3 # each item is an array of gene expression levels, i.e., each item is a row
+ d_return['yy'] = d4 # each item is an array of gene expression levels, i.e., each item is a column
+ d_return['nrow'] = lineno - 1
+ d_return['ncol'] = len(colid)
+ d_return['rowid'] = rowid
+ d_return['colid'] = colid
+
+ # d4_sorted = {}
+ # for k in d4:
+ # d4_sorted[k] = sorted(d4[k], reverse=True)
+ # d_return['yy_sorted'] = d4_sorted
+
+ return d_return
+
+
+def get_key_value(s):
+ lst = s.split('=')
+ k, v = lst[0], lst[1]
+ return (k.strip(), v.strip())
+
+
+def make_global_param_dict(fname):
+ f = open(fname)
+ d = {}
+ for line in f:
+ line = line.strip()
+ if line.startswith(GLB_PARAM_SYMBOL):
+ s = line[line.rfind(GLB_PARAM_SYMBOL[-1])+1:]
+ lst = s.split('\t') # separate items by TAB
+ for x in lst:
+ if x != '':
+ k, v = get_key_value(x)
+ d[k] = v
+ f.close()
+ return d
+
+
+def take_log(x):
+ return np.log(x+1)
+
+
+def make_json_file(expr_dict, dir_name, glb_param_dict):
+ if not os.path.isdir(dir_name): # create the directory if not exist
+ os.makedirs(dir_name)
+
+ d = expr_dict['xy']
+ col_name_lst = expr_dict['colid']
+ row_name_lst = expr_dict['rowid']
+ for g in row_name_lst:
+ #print(g)
+ d2 = d[g]
+ if glb_param_dict['LOGRITHMIZE'].upper() == 'YES':
+ d3 = {k: take_log(v) for k, v in d2.items()}
+ else:
+ d3 = d2
+ filename = os.path.join(dir_name, g + '.json')
+ with open(filename, 'w') as f:
+ json.dump(d3, f)
+
+
+def make_json_file_using_r(dir_name, glb_param_dict): # use r script to make it faster
+ r_code = '''
+ library(rjson)
+ dir.name <- '%s'
+ tpm.file <- '%s'
+ take.log <- '%s'
+ X <- read.table(tpm.file, header=T, check.names=FALSE, sep="\\t")
+ gene.id <- as.vector(X[,1])
+ X[,1] <- NULL # remove first column
+ if (take.log == 'YES') {
+ X <- log(X+1)
+ }
+ if (!dir.exists(dir.name)) {
+ dir.create(dir.name)
+ }
+ for (i in 1:dim(X)[1]) {
+ y <- toJSON(X[i,])
+ file.name = paste(dir.name, paste(gene.id[i], 'json', sep='.'), sep='/')
+ cat(y, file=file.name)
+ }
+ ''' % (
+ dir_name,
+ glb_param_dict['EXPRESSION_MATRIX'],
+ glb_param_dict['LOGRITHMIZE'].upper())
+ f = open('slice_TPM_to_JSON.R', 'w') # make a R script
+ f.write('\n'.join([line.lstrip('\t') for line in r_code.split('\n')]))
+ f.close()
+ os.system('Rscript slice_TPM_to_JSON.R')
+ os.system('rm -f slice_TPM_to_JSON.R')
+
+
+## main
+param_file = sys.argv[1] # a single prameter file
+glb_param_dict = make_global_param_dict(param_file)
+#expr_dict = read_matrix_data(glb_param_dict['EXPRESSION_MATRIX'])
+#make_json_file(expr_dict, JSON_DIR, glb_param_dict) # slower version
+make_json_file_using_r(JSON_DIR, glb_param_dict) # faster version