0
0
Fork 0
EnglishPal/app/Article.py

150 lines
6.2 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

from WordFreq import WordFreq
from wordfreqCMD import youdao_link, sort_in_descending_order
import pickle_idea, pickle_idea2
import os
import random, glob
import hashlib
from datetime import datetime
from flask import Flask, request, redirect, render_template, url_for, session, abort, flash, get_flashed_messages
from difficulty import get_difficulty_level_for_user, text_difficulty_level, user_difficulty_level
from model.article import get_all_articles, get_article_by_id, get_number_of_articles
import logging
path_prefix = './'
db_path_prefix = './db/' # comment this line in deployment
def total_number_of_essays():
return get_number_of_articles()
def get_article_title(s):
return s.split('\n')[0]
def get_article_body(s):
lst = s.split('\n')
lst.pop(0) # remove the first line
return '\n'.join(lst)
#user_articlesWithoutNewWords_record 保存前端传来的用户阅读时长超过15秒且不含高亮生词的文章索引
def get_today_article(user_word_list, visited_articles,user_articlesWithoutNewWords_record):
if visited_articles is None:
visited_articles = {
"index" : 0, # 为 article_ids 的索引
"article_ids": [] # 之前显示文章的id列表越后越新
}
if visited_articles["index"] > len(visited_articles["article_ids"])-1: # 生成新的文章,因此查找所有的文章
result = get_all_articles()
else: # 生成阅读过的文章,因此查询指定 article_id 的文章
if visited_articles["article_ids"][visited_articles["index"]] == 'null': # 可能因为直接刷新页面导致直接去查询了'null',因此当刷新的页面的时候,需要直接进行“上一篇”操作
visited_articles["index"] -= 1
visited_articles["article_ids"].pop()
article_id = visited_articles["article_ids"][visited_articles["index"]]
result = get_article_by_id(article_id)
random.shuffle(result)
# Choose article according to reader's level
logging.debug('* get_today_article(): start d1 = ... ')
d1 = load_freq_history(user_word_list)
d2 = load_freq_history(path_prefix + 'static/words_and_tests.p')
logging.debug(' ... get_today_article(): get_difficulty_level_for_user() start')
d3 = get_difficulty_level_for_user(d1, d2)
logging.debug(' ... get_today_article(): done')
d = None
result_of_generate_article = "not found"
d_user = load_freq_history(user_word_list)
logging.debug('* get_today_article(): user_difficulty_level() start')
articles_id_list=None
if os.path.exists(user_articlesWithoutNewWords_record) != False:
articles_id_list = pickle_idea.load_record(user_articlesWithoutNewWords_record)
#将 用户阅读时长超过15秒且不含高亮生词的文章记录 传入user_difficulty_level并据此 提高用户level
user_level = user_difficulty_level(d_user, d3,articles_id_list) # more consideration as user's behaviour is dynamic. Time factor should be considered.
logging.debug('* get_today_article(): done')
text_level = 0
if visited_articles["index"] > len(visited_articles["article_ids"])-1: # 生成新的文章
amount_of_visited_articles = len(visited_articles["article_ids"])
amount_of_existing_articles = result.__len__()
if amount_of_visited_articles == amount_of_existing_articles: # 如果当前阅读过的文章的数量 == 存在的文章的数量,即所有的书本都阅读过了
result_of_generate_article = "had read all articles"
else:
for k in range(3): # 最多尝试3次
for reading in result:
text_level = text_difficulty_level(reading['text'], d3)
factor = random.gauss(0.8, 0.1) # a number drawn from Gaussian distribution with a mean of 0.8 and a stand deviation of 1
if reading['article_id'] not in visited_articles["article_ids"] and within_range(text_level, user_level, (8.0 - user_level) * factor): # 新的文章之前没有出现过且符合一定范围的水平
d = reading
visited_articles["article_ids"].append(d['article_id']) # 列表添加新的文章id下面进行
result_of_generate_article = "found"
break
if result_of_generate_article == "found": # 用于成功找到文章后及时退出外层循环
break
if result_of_generate_article != "found": # 阅读完所有文章或者循环3次没有找到适合的文章则放入空“null”
visited_articles["article_ids"].append('null')
else: # 生成已经阅读过的文章
d = random.choice(result)
text_level = text_difficulty_level(d['text'], d3)
result_of_generate_article = "found"
today_article = None
if d:
today_article = {
"user_level": '%4.1f' % user_level,
"text_level": '%4.1f' % text_level,
"date": d['date'],
"article_id":d['article_id'],#该变量存储 用户阅读时长超过15秒且不含高亮生词的文章索引
"article_title": get_article_title(d['text']),
"article_body": get_article_body(d['text']),
"source": d["source"],
"question": get_question_part(d['question']),
"answer": get_answer_part(d['question'])
}
return visited_articles, today_article, result_of_generate_article
def load_freq_history(path):
d = {}
if os.path.exists(path):
d = pickle_idea.load_record(path)
return d
def within_range(x, y, r):
return x > y and abs(x - y) <= r
def get_question_part(s):
s = s.strip()
result = []
flag = 0
for line in s.split('\n'):
line = line.strip()
if line == 'QUESTION':
result.append(line)
flag = 1
elif line == 'ANSWER':
flag = 0
elif flag == 1:
result.append(line)
return '\n'.join(result)
def get_answer_part(s):
s = s.strip()
result = []
flag = 0
for line in s.split('\n'):
line = line.strip()
if line == 'ANSWER':
flag = 1
elif flag == 1:
result.append(line)
return '\n'.join(result)