1
0
Fork 0
EnglishPal/app/pickle_idea2.py

89 lines
2.3 KiB
Python
Raw Permalink Normal View History

2021-04-06 16:22:03 +08:00
###########################################################################
# Copyright 2019 (C) Hui Lan <hui.lan@cantab.net>
# Written permission must be obtained from the author for commercial uses.
###########################################################################
# Purpose: dictionary & pickle as a simple means of database.
# Task: incorporate the functions into wordfreqCMD.py such that it will also show cumulative frequency.
# Note: unlike pick_idea.py, now the second item is not frequency, but a list of dates.
import pickle
from datetime import datetime
def lst2dict(lst, d):
'''
Store the information in list lst to dictionary d.
Note: nothing is returned.
'''
for x in lst:
word = x[0]
dates = x[1]
if not word in d:
d[word] = dates
else:
d[word] += dates
def deleteRecord(path,word):
with open(path, 'rb') as f:
db = pickle.load(f)
try:
db.pop(word)
except KeyError:
print("sorry")
with open(path, 'wb') as ff:
pickle.dump(db, ff)
2021-04-06 16:22:03 +08:00
def dict2lst(d):
if len(d) > 0:
keys = list(d.keys())
if isinstance(d[keys[0]], int):
lst = []
for k in d:
lst.append((k, [datetime.now().strftime('%Y%m%d%H%M')]))
return lst
elif isinstance(d[keys[0]], list):
return list(d.items()) # a list of (key, value) pairs
return []
def merge_frequency(lst1, lst2):
d = {}
lst2dict(lst1, d)
lst2dict(lst2, d)
return d
def load_record(pickle_fname):
f = open(pickle_fname, 'rb')
d = pickle.load(f)
f.close()
return d
def save_frequency_to_pickle(d, pickle_fname):
f = open(pickle_fname, 'wb')
d2 = {}
for k in d:
if not k.isnumeric() and not len(k) < 2:
2023-04-25 08:40:26 +08:00
d2[k] = list(sorted(d[k])) # 原先这里是d2[k] = list(sorted(set(d[k])))
2021-04-06 16:22:03 +08:00
pickle.dump(d2, f)
f.close()
if __name__ == '__main__':
lst1 = [('apple',['201910251437', '201910251438']), ('banana',['201910251439'])]
d = {}
lst2dict(lst1, d) # d will change
save_frequency_to_pickle(d, 'frequency.p') # frequency.p is our database
lst2 = [('banana',['201910251439']), ('orange', ['201910251440', '201910251439'])]
d = load_record('frequency.p')
lst1 = dict2lst(d)
d = merge_frequency(lst2, lst1)
print(d)