""" 词汇难度评估系统 功能:根据单词在不同考试中的出现情况评估其难度级别,并计算用户或文章的词汇水平 """ import re import pickle from typing import Dict, List, Tuple, Union # 预编译正则表达式提高性能 WORD_PATTERN = re.compile(r'\b[\w-]+\b') def load_record(pickle_fname: str) -> Dict[str, List[str]]: """ 加载pickle格式的单词-考试类型数据 参数: pickle_fname: pickle文件名 返回: 字典格式的单词到考试类型列表的映射 异常: FileNotFoundError: 当文件不存在时抛出 ValueError: 当pickle文件损坏时抛出 """ try: with open(pickle_fname, 'rb') as f: return pickle.load(f) except FileNotFoundError: raise FileNotFoundError(f"Pickle文件 {pickle_fname} 未找到") except pickle.PickleError: raise ValueError(f"Pickle文件 {pickle_fname} 损坏或格式不正确") def convert_test_type_to_difficulty_level(d: Dict[str, List[str]]) -> Dict[str, int]: """ 将考试类型映射为难度级别 难度级别定义: 0: 未知/未分类 4: CET4 5: OXFORD3000 6: CET6或GRADUATE 7: IELTS或OXFORD5000 8: BBC 参数: d: 单词到考试类型列表的映射 返回: 单词到难度级别的映射 """ result = {} for word, test_types in d.items(): if 'CET4' in test_types: result[word] = 4 elif 'OXFORD3000' in test_types: result[word] = 5 elif 'CET6' in test_types or 'GRADUATE' in test_types: result[word] = 6 elif 'IELTS' in test_types: result[word] = 7 elif 'OXFORD5000' in test_types: result[word] = 7 elif 'BBC' in test_types: result[word] = 8 else: result[word] = 0 return result class VocabularyLevelEstimator: """ 词汇难度评估基类 使用预定义的单词-考试类型数据评估单词难度级别 类属性: _test_raw: 原始单词-考试类型数据 _difficulty_dict: 转换后的单词-难度级别映射 """ _test_raw = None _difficulty_dict = None @classmethod def _load_data(cls): """延迟加载数据,避免不必要的文件操作""" if cls._test_raw is None: cls._test_raw = load_record('words_and_tests.p') cls._difficulty_dict = convert_test_type_to_difficulty_level(cls._test_raw) @classmethod def get_word_level(cls, word: str) -> int: """ 获取单词难度级别 参数: word: 要查询的单词 返回: 单词的难度级别(0-8) """ cls._load_data() return cls._difficulty_dict.get(word, 0) class UserVocabularyLevel(VocabularyLevelEstimator): """ 用户词汇水平评估 根据用户最近查询的单词评估其词汇水平 """ def __init__(self, d: Dict[str, List[int]]): """ 初始化用户词汇数据 参数: d: 单词到时间戳列表的映射 """ self.d = d # 获取每个单词的最新查询时间并排序 word_time = [(word, max(times)) for word, times in d.items() if times] sorted_words = sorted(word_time, key=lambda x: x[1], reverse=True) self.recent_words = [word for word, _ in sorted_words[:3]] @property def level(self) -> float: """ 计算用户词汇水平 返回: 最近查询的有效单词的平均难度级别 如果没有有效单词则返回0 """ levels = [self.get_word_level(word) for word in self.recent_words] valid_levels = [lvl for lvl in levels if lvl > 0] return sum(valid_levels) / len(valid_levels) if valid_levels else 0 class ArticleVocabularyLevel(VocabularyLevelEstimator): """ 文章词汇水平评估 根据文章中出现的最高难度单词评估文章词汇水平 """ def __init__(self, content: str): """ 初始化文章内容 参数: content: 文章内容字符串 异常: ValueError: 当内容为空或不是字符串时抛出 """ if not content or not isinstance(content, str): raise ValueError("文章内容必须是非空字符串") self.content = content # 提取所有单词并计算难度 words = WORD_PATTERN.findall(content.lower()) word_levels = [self.get_word_level(word) for word in words] # 筛选有效难度并排序 valid_levels = sorted([lvl for lvl in word_levels if lvl > 0], reverse=True) self.top_levels = valid_levels[:5] if valid_levels else [] @property def level(self) -> float: """ 计算文章词汇水平 返回: 文章中最难5个单词的平均难度级别 如果没有有效单词则返回0 """ if not self.top_levels: return 0 return sum(self.top_levels) / len(self.top_levels)