Bug585-Wangxitao #197
Binary file not shown.
|
@ -0,0 +1,196 @@
|
|||
import re
|
||||
import pickle
|
||||
import os
|
||||
from typing import Dict, List, Tuple, Union
|
||||
from collections import Counter
|
||||
|
||||
# 预编译正则表达式提高性能
|
||||
WORD_PATTERN = re.compile(r'\b[\w-]+\b')
|
||||
|
||||
|
||||
class VocabularyLevelEstimator:
|
||||
"""
|
||||
词汇难度评估基类
|
||||
使用预定义的单词-考试类型数据评估单词难度级别
|
||||
|
||||
类属性:
|
||||
_test_raw: 原始单词-考试类型数据
|
||||
_difficulty_dict: 转换后的单词-难度级别映射
|
||||
"""
|
||||
_test_raw = None
|
||||
_difficulty_dict = None
|
||||
PICKLE_PATH = 'static/words_and_tests.p' # 默认数据文件路径
|
||||
|
||||
@classmethod
|
||||
def _load_data(cls):
|
||||
"""延迟加载数据,避免不必要的文件操作"""
|
||||
if cls._test_raw is None:
|
||||
cls._test_raw = cls.load_record(cls.PICKLE_PATH)
|
||||
cls._difficulty_dict = cls.convert_test_type_to_difficulty_level(cls._test_raw)
|
||||
|
||||
@staticmethod
|
||||
def load_record(pickle_fname: str) -> Dict[str, List[str]]:
|
||||
"""
|
||||
加载pickle格式的单词-考试类型数据
|
||||
|
||||
参数:
|
||||
pickle_fname: pickle文件名
|
||||
|
||||
返回:
|
||||
字典格式的单词到考试类型列表的映射
|
||||
|
||||
异常:
|
||||
FileNotFoundError: 当文件不存在时抛出
|
||||
ValueError: 当pickle文件损坏时抛出
|
||||
"""
|
||||
try:
|
||||
# 文件校验
|
||||
if not os.path.exists(pickle_fname):
|
||||
raise FileNotFoundError(f"词汇数据文件 {pickle_fname} 未找到")
|
||||
if not pickle_fname.endswith('.p'):
|
||||
raise ValueError("仅支持.pickle格式文件")
|
||||
|
||||
with open(pickle_fname, 'rb') as f:
|
||||
return pickle.load(f)
|
||||
except pickle.PickleError as e:
|
||||
raise ValueError(f"Pickle文件 {pickle_fname} 损坏: {str(e)}")
|
||||
|
||||
@staticmethod
|
||||
def convert_test_type_to_difficulty_level(d: Dict[str, List[str]]) -> Dict[str, int]:
|
||||
"""
|
||||
将考试类型映射为难度级别
|
||||
|
||||
难度级别定义:
|
||||
0: 未知/未分类
|
||||
4: CET4
|
||||
5: OXFORD3000
|
||||
6: CET6或GRADUATE
|
||||
7: IELTS或OXFORD5000
|
||||
8: BBC
|
||||
|
||||
参数:
|
||||
d: 单词到考试类型列表的映射
|
||||
|
||||
返回:
|
||||
单词到难度级别的映射
|
||||
"""
|
||||
result = {}
|
||||
for word, test_types in d.items():
|
||||
word_lower = word.lower() # 统一小写处理
|
||||
if 'CET4' in test_types:
|
||||
result[word_lower] = 4
|
||||
elif 'OXFORD3000' in test_types:
|
||||
result[word_lower] = 5
|
||||
elif 'CET6' in test_types or 'GRADUATE' in test_types:
|
||||
result[word_lower] = 6
|
||||
elif 'IELTS' in test_types or 'OXFORD5000' in test_types:
|
||||
result[word_lower] = 7
|
||||
elif 'BBC' in test_types:
|
||||
result[word_lower] = 8
|
||||
else:
|
||||
result[word_lower] = 0
|
||||
return result
|
||||
|
||||
@classmethod
|
||||
def get_word_level(cls, word: str) -> int:
|
||||
"""
|
||||
获取单词难度级别
|
||||
|
||||
参数:
|
||||
word: 要查询的单词
|
||||
|
||||
返回:
|
||||
单词的难度级别(0-8)
|
||||
"""
|
||||
cls._load_data()
|
||||
return cls._difficulty_dict.get(word.lower(), 0)
|
||||
|
||||
@classmethod
|
||||
def reload_data(cls, new_path=None):
|
||||
"""强制重新加载词汇数据"""
|
||||
if new_path:
|
||||
cls.PICKLE_PATH = new_path
|
||||
cls._test_raw = None
|
||||
cls._difficulty_dict = None
|
||||
cls._load_data()
|
||||
|
||||
|
||||
class UserVocabularyLevel(VocabularyLevelEstimator):
|
||||
"""用户词汇水平评估"""
|
||||
|
||||
def __init__(self, user_data: Dict[str, List[int]]):
|
||||
"""
|
||||
初始化用户词汇数据
|
||||
|
||||
参数:
|
||||
user_data: 单词到时间戳列表的映射
|
||||
"""
|
||||
# 获取每个单词的最新查询时间并排序
|
||||
word_time = [(word, max(times)) for word, times in user_data.items() if times]
|
||||
sorted_words = sorted(word_time, key=lambda x: x[1], reverse=True)
|
||||
self.recent_words = [word for word, _ in sorted_words[:3]] # 取最近3个单词
|
||||
|
||||
@property
|
||||
def level(self) -> float:
|
||||
"""
|
||||
计算用户词汇水平
|
||||
|
||||
返回:
|
||||
最近查询的有效单词的平均难度级别
|
||||
如果没有有效单词则返回0
|
||||
"""
|
||||
levels = [self.get_word_level(word) for word in self.recent_words]
|
||||
valid_levels = [lvl for lvl in levels if lvl > 0]
|
||||
return sum(valid_levels) / len(valid_levels) if valid_levels else 0
|
||||
|
||||
|
||||
class ArticleVocabularyLevel(VocabularyLevelEstimator):
|
||||
"""文章词汇水平评估"""
|
||||
|
||||
def __init__(self, content: str):
|
||||
"""
|
||||
初始化文章内容
|
||||
|
||||
参数:
|
||||
content: 文章内容字符串
|
||||
"""
|
||||
if not content or not isinstance(content, str):
|
||||
self.top_levels = []
|
||||
return
|
||||
|
||||
# 文本预处理:转换为小写并提取单词
|
||||
words = WORD_PATTERN.findall(content.lower())
|
||||
|
||||
# 计算单词难度并筛选有效值
|
||||
word_levels = [self.get_word_level(word) for word in words]
|
||||
valid_levels = sorted([lvl for lvl in word_levels if lvl > 0], reverse=True)
|
||||
|
||||
# 取难度最高的5个单词
|
||||
self.top_levels = valid_levels[:5] if valid_levels else []
|
||||
|
||||
@property
|
||||
def level(self) -> float:
|
||||
"""
|
||||
计算文章词汇水平
|
||||
|
||||
返回:
|
||||
文章中最难5个单词的平均难度级别
|
||||
如果没有有效单词则返回0
|
||||
"""
|
||||
if not self.top_levels:
|
||||
return 0
|
||||
return sum(self.top_levels) / len(self.top_levels)
|
||||
|
||||
def word_frequency(self, top_n=10) -> Dict[str, int]:
|
||||
"""
|
||||
获取文章词频统计
|
||||
|
||||
参数:
|
||||
top_n: 返回的最高频单词数量
|
||||
|
||||
返回:
|
||||
词频最高的top_n个单词及其频率
|
||||
"""
|
||||
words = WORD_PATTERN.findall(self.content.lower())
|
||||
word_freq = Counter(words)
|
||||
return dict(word_freq.most_common(top_n))
|
Loading…
Reference in New Issue