diff --git a/app/Article.py b/app/Article.py
index b493f47..51b9b74 100644
--- a/app/Article.py
+++ b/app/Article.py
@@ -62,8 +62,11 @@ def get_today_article(user_word_list, articleID):
d = reading
break
- s = '
According to your word list, your level is %4.2f and we have chosen an article with a difficulty level of %4.2f for you.
' % (
- user_level, text_level)
+ s = '' \
+ 'According to your word list, your level is %4.2f ' \
+ 'and we have chosen an article with a difficulty level of ' \
+ '%4.2f for you.' \
+ '
' % (user_level, text_level)
s += 'Article added on: %s
' % (d['date'])
s += ''
article_title = get_article_title(d['text'])
diff --git a/app/difficulty.py b/app/difficulty.py
index 0d6d8b7..9ae52eb 100644
--- a/app/difficulty.py
+++ b/app/difficulty.py
@@ -17,26 +17,6 @@ def load_record(pickle_fname):
f.close()
return d
-
-def difficulty_level_from_frequency(word, d):
- """
- 根据单词的频率进行难度的评级
- :param word:
- :param d:
- :return:
- """
- level = 1
- if not word in d:
- return level
-
- if 'what' in d:
- ratio = (d['what']+1)/(d[word]+1) # what is a frequent word
- level = math.log(max(ratio, 1), 2)
-
- level = min(level, 8)
- return level
-
-
def convert_test_type_to_difficulty_level(d):
"""
对原本的单词库中的单词进行难度评级
@@ -49,14 +29,14 @@ def convert_test_type_to_difficulty_level(d):
for k in L:
if 'CET4' in d[k]:
result[k] = 4 # CET4 word has level 4
+ elif 'OXFORD3000' in d[k]:
+ result[k] = 5
elif 'CET6' in d[k] or 'GRADUATE' in d[k]:
result[k] = 6
- elif 'IELTS' in d[k]: # 雅思
+ elif 'OXFORD5000' in d[k]:
result[k] = 7
elif 'BBC' in d[k]:
result[k] = 8
- elif 'EnWords' in d[k]: # 除基础词汇外的绝大多数词,包括一些犄角旮旯的专业词汇,近九万个,定级不太好处理,绝大多数我是真不认识
- result[k] = 3
return result # {'apple': 4, ...}
@@ -80,7 +60,7 @@ def simplify_the_words_dict(d):
def get_difficulty_level_for_user(d1, d2):
"""
- d2 来自于词库的27000个已标记单词
+ d2 来自于词库的35511个已标记单词
d1 用户不会的词
在d2的后面添加单词,没有新建一个新的字典
"""
@@ -89,12 +69,13 @@ def get_difficulty_level_for_user(d1, d2):
stem = snowballstemmer.stemmer('english')
for k in d1: # 用户的词
- for l in d2_simplified: # l是词库的某个单词的词根
- if stem.stemWord(k) == l: # 两者相等则视为同一难度的词
- d2[k] = d2_simplified[l] # 给d2定级
- break
- else: # 不相等则表明词库中没这词,按照单词的频率定级
- d2[k] = difficulty_level_from_frequency(k, d1)
+ if k in d2: # 如果用户的词以原型的形式存在于词库d2中
+ continue # 无需评级,跳过
+ elif stem.stemWord(k) in d2_simplified: # 如果用户的词的词根存在于词库d2的词根库中
+ d2[k] = d2_simplified[k] # 按照词根进行评级
+ break
+ else:
+ d2[k] = 3 # 如果k的词根都不在,那么就当认为是3级
return d2