EnglishPal/app/vocabulary.py

123 lines
3.4 KiB
Python
Raw Normal View History

'''
Estimate a user's vocabulary level given his vocabulary data
Estimate an English article's difficulty level given its content
Preliminary design
Hui, 2024-09-23
Last upated: 2024-09-25, 2024-09-30
'''
import pickle
import re
from collections import defaultdict
def load_record(pickle_fname):
with open(pickle_fname, 'rb') as f:
d = pickle.load(f)
return d
class VocabularyLevelEstimator:
_test = load_record('words_and_tests.p') # 单词到来源的映射
_source_levels = { # 来源到难度分数的映射
'BBC': 1,
'CET4': 2,
'CET6': 3,
'GRADUATE': 4,
'OXFORD3000': 1,
'TOEFL': 5,
'IELTS': 5,
'GRE': 7
}
def get_word_level(self, word):
"""获取单词难度分数"""
if word in self._test:
sources = self._test[word]
word_levels = [
self._source_levels[src]
for src in sources
if src in self._source_levels
]
if word_levels:
# 使用最高分
return max(word_levels)
return 0 # 未知单词难度为0
class UserVocabularyLevel(VocabularyLevelEstimator):
def __init__(self, d, recent_count=3):
self.d = d
# 按时间戳排序(最新的在前)
sorted_words = sorted(d.items(), key=lambda x: max(x[1]), reverse=True)
# 取最近的单词默认3个
self.word_lst = [word for word, _ in sorted_words[:recent_count]]
@property
def level(self):
if not self.word_lst:
return 0.0
# 使用最高分
max_score = 0
for word in self.word_lst:
score = self.get_word_level(word)
if score > max_score:
max_score = score
return max_score
class ArticleVocabularyLevel(VocabularyLevelEstimator):
def __init__(self, content):
self.content = content
# 更智能的分词,处理连字符和缩写
words = re.findall(r'\b[\w-]+\b', content.lower())
# 计算每个单词的频率和分数
word_freq = defaultdict(int)
word_scores = {}
for word in words:
if word.isalpha():
word_freq[word] += 1
if word not in word_scores:
word_scores[word] = self.get_word_level(word)
# 计算加权分数(频率 * 分数)
weighted_scores = []
for word, score in word_scores.items():
if score > 0:
weighted_scores.append((score * word_freq[word], score, word))
# 如果没有有效单词,直接返回
if not weighted_scores:
self.difficult_words = []
return
# 按加权分数排序
weighted_scores.sort(reverse=True)
# 只保留前20%的单词至少5个最多15个
num_top_words = max(5, min(15, len(weighted_scores) // 5))
self.difficult_words = [score for _, score, _ in weighted_scores[:num_top_words]]
@property
def level(self):
if not self.difficult_words:
return 0.0
# 使用最高分
return max(self.difficult_words)
if __name__ == '__main__':
d = load_record('frequency_mrlan85.pickle')
print(d)
user = UserVocabularyLevel(d)
print(user.level) # level is a property
article = ArticleVocabularyLevel('This is an interesting article')
print(article.level)