from WordFreq import WordFreq from wordfreqCMD import youdao_link, sort_in_descending_order from UseSqlite import InsertQuery, RecordQuery import pickle_idea, pickle_idea2 import os import random, glob import hashlib from datetime import datetime from flask import Flask, request, redirect, render_template, url_for, session, abort, flash, get_flashed_messages from difficulty import get_difficulty_level, text_difficulty_level, user_difficulty_level from model.article import get_number_of_articles, get_article, get_article_by_id path_prefix = '/var/www/wordfreq/wordfreq/' path_prefix = './' # comment this line in deployment def total_number_of_essays(): get_number_of_articles() def get_article_title(s): return s.split('\n')[0] def get_article_body(s): lst = s.split('\n') lst.pop(0) # remove the first line return '\n'.join(lst) def get_today_article(user_word_list, existing_articles): if existing_articles is None: existing_articles = { "index" : 0, # 为 article_ids 的索引 "article_ids": [] # 之前显示文章的id列表,越后越新 } if existing_articles["index"] > len(existing_articles["article_ids"])-1: result = list(get_article()) # 转为一个list else: result = [get_article_by_id(existing_articles["article_ids"][existing_articles["index"]])] random.shuffle(result) # Choose article according to reader's level d1 = load_freq_history(path_prefix + 'static/frequency/frequency.p') d2 = load_freq_history(path_prefix + 'static/words_and_tests.p') d3 = get_difficulty_level(d1, d2) d = None d_user = load_freq_history(user_word_list) user_level = user_difficulty_level(d_user, d3) # more consideration as user's behaviour is dynamic. Time factor should be considered. text_level = 0 if existing_articles["index"] > len(existing_articles["article_ids"])-1: # 下一篇 flag_get_article = False for reading in result: text_level = text_difficulty_level(reading.text, d3) factor = random.gauss(0.8, 0.1) # a number drawn from Gaussian distribution with a mean of 0.8 and a stand deviation of 1 if reading.article_id not in existing_articles["article_ids"] and within_range(text_level, user_level, (8.0 - user_level) * factor): # 新的文章之前没有出现过且符合一定范围的水平 d = reading existing_articles["article_ids"].append(d.article_id) # 列表添加新的文章id;下面进行 flag_get_article = True break if not flag_get_article: existing_articles["index"] -= 1 else: # 上一篇 d = random.choice(result) text_level = text_difficulty_level(d.text, d3) today_article = None if d: today_article = { "user_level": '%4.2f' % user_level, "text_level": '%4.2f' % text_level, "date": d.date, "article_title": get_article_title(d.text), "article_body": get_article_body(d.text), "source": d.source, "question": get_question_part(d.question), "answer": get_answer_part(d.question) } return existing_articles, today_article def load_freq_history(path): d = {} if os.path.exists(path): d = pickle_idea.load_record(path) return d def within_range(x, y, r): return x > y and abs(x - y) <= r def get_question_part(s): s = s.strip() result = [] flag = 0 for line in s.split('\n'): line = line.strip() if line == 'QUESTION': result.append(line) flag = 1 elif line == 'ANSWER': flag = 0 elif flag == 1: result.append(line) return '\n'.join(result) def get_answer_part(s): s = s.strip() result = [] flag = 0 for line in s.split('\n'): line = line.strip() if line == 'ANSWER': flag = 1 elif flag == 1: result.append(line) return '\n'.join(result)