# Usage: python slice_TPM_to_JSON.py parameter_for_net.txt
#
# Purpose: Given the matrix TPM.txt, make logarithmised gene
# expression in json format for each gene. Put the results in
# JSON_DIR.  The results are used for displaying scatterplots in
# Webapp.
#
# Last modified 24 Apr 2017, slcu, hui [use r to do the job, faster]

import sys, os, operator, itertools
import numpy as np
import json

JSON_DIR = '../Data/history/expr/json' # contain json for all genes, one json file for each gene.  Each json file has the following format {"R0ERR046550XXX": 2.8148097376737438, "R0ERR031542XXX": 2.5193080765053328, ...}

GLB_PARAM_SYMBOL    = '%%'
DATA_SYMBOL         = '@'

# read expression TPM
def read_matrix_data(fname):
    ''' 
    fname - a file, first line is head, first column is row name.
    '''
    
    lineno = 0
    colid = []
    rowid = []
    d =  {}  # {gene1:{cond1:val1, cond2:val2, ...}, gene2: {...}, ...}
    d2 = {} # {cond1:{gene1:val1, gene2:val2, ...}, cond2: {...}, ...}
    d3 = {} # {gene1: [], gene2: [], ...}
    d4 = {} # {cond1:[], cond2:[], ...}

    f = open(fname)
    lines = f.readlines()
    f.close()

    head_line = lines[0].strip()
    lst = head_line.split()
    colid = lst[1:]

    for c in colid:
        d2[c] = {}
        d4[c] = []
    
    for line in lines[1:]:
        line = line.strip()
        lst = line.split()
        g = lst[0]
        rowid.append(g)
        d[g] = {}
        levels = lst[1:]
        if len(levels) != len(colid):
            print('Incomplete columns at row %s' % (g))
            sys.exit()
            
        d3[g] = []
        for i in range(len(colid)):
            c = colid[i]
            d[g][c]  = float(levels[i])
            d2[c][g] = float(levels[i])
            d3[g].append(float(levels[i]))
            d4[c].append(float(levels[i]))
        lineno += 1

    d_return = {}
    d_return['xy'] = d  # first gene, then condition
    d_return['yx'] = d2 # first condition, then gene
    d_return['xx'] = d3 # each item is an array of gene expression levels, i.e., each item is a row
    d_return['yy'] = d4 # each item is an array of gene expression levels, i.e., each item is a column
    d_return['nrow'] = lineno - 1
    d_return['ncol'] = len(colid)
    d_return['rowid'] = rowid
    d_return['colid'] = colid    

    # d4_sorted = {}
    # for k in d4:
    #     d4_sorted[k] = sorted(d4[k], reverse=True)
    # d_return['yy_sorted'] = d4_sorted

    return d_return


def get_key_value(s):
    lst = s.split('=')
    k, v = lst[0], lst[1]
    return (k.strip(), v.strip())


def make_global_param_dict(fname):
    f = open(fname)
    d = {}
    for line in f:
        line = line.strip()
        if line.startswith(GLB_PARAM_SYMBOL):
            s = line[line.rfind(GLB_PARAM_SYMBOL[-1])+1:]
            lst = s.split('\t')  # separate items by TAB
            for x in lst:
                if x != '':
                    k, v = get_key_value(x)
                    d[k] = v
    f.close()
    return d


def take_log(x):
    return np.log(x+1)


def make_json_file(expr_dict, dir_name, glb_param_dict):
    if not os.path.isdir(dir_name): # create the directory if not exist
        os.makedirs(dir_name)

    d = expr_dict['xy']
    col_name_lst = expr_dict['colid']
    row_name_lst = expr_dict['rowid']
    for g in row_name_lst:
        #print(g)
        d2 = d[g]
        if glb_param_dict['LOGRITHMIZE'].upper() == 'YES':
            d3 = {k: take_log(v) for k, v in d2.items()}
        else:
            d3 = d2
        filename = os.path.join(dir_name, g + '.json')
        with open(filename, 'w') as f:
            json.dump(d3, f)


def make_json_file_using_r(dir_name, glb_param_dict): # use r script to make it faster
    r_code = '''
	library(rjson)
	dir.name <- '%s'
	tpm.file <- '%s'
	take.log <- '%s'
	X <- read.table(tpm.file, header=T, check.names=FALSE, sep="\\t")
	gene.id <- as.vector(X[,1])
	X[,1] <- NULL # remove first column
	if (take.log == 'YES') {
	    X <- log(X+1)
	}
	if (!dir.exists(dir.name)) {
	    dir.create(dir.name)
	}
	for (i in 1:dim(X)[1]) {
	    y <- toJSON(X[i,])
	    file.name = paste(dir.name, paste(gene.id[i], 'json', sep='.'), sep='/')
	    cat(y, file=file.name)
	}
	''' % (
        dir_name,
        glb_param_dict['EXPRESSION_MATRIX'],
        glb_param_dict['LOGRITHMIZE'].upper())
    f = open('slice_TPM_to_JSON.R', 'w') # make a R script
    f.write('\n'.join([line.lstrip('\t') for line in r_code.split('\n')]))
    f.close()
    os.system('Rscript slice_TPM_to_JSON.R')
    os.system('rm -f slice_TPM_to_JSON.R')

    
## main
param_file = sys.argv[1] # a single prameter file
glb_param_dict = make_global_param_dict(param_file)
#expr_dict = read_matrix_data(glb_param_dict['EXPRESSION_MATRIX'])
#make_json_file(expr_dict, JSON_DIR, glb_param_dict) # slower version
make_json_file_using_r(JSON_DIR, glb_param_dict) # faster version