# Usage: python make_target_tf.py parameter_for_net.txt > target_tf.txt # # Purpose: Make a target tfs file: each line is 'Target TF1 Condition.list'. # See ../Data/information/target_tf.txt for an example. # # Created on 17 JAN 2017, hui # Last modified on 16 Mar 2017, slcu, hui # Last modified on 5 Aug 2019, zjnu, hui # Last modified on 9 Oct 2019, zjnu, hui # Last modified on 22 Nov 2019, zjnu, hui [include binding information from two sources: target_tf.txt.20170629_143000 (results I made when I was at SLCU between 2016 and 2017) and target_tf_agris.txt] import sys, os, operator, itertools import numpy as np from param4net import make_global_param_dict #################################### DATA_SYMBOL = '@' SIGNAL_INPUT_RATIO_TAU = 1.5 #################################### def read_matrix_data(fname): ''' fname - a file, first line is head, first column is row name. ''' lineno = 0 colid = [] rowid = [] d = {} # {gene1:{cond1:val1, cond2:val2, ...}, gene2: {...}, ...} d2 = {} # {cond1:{gene1:val1, gene2:val2, ...}, cond2: {...}, ...} d3 = {} # {gene1: [], gene2: [], ...} d4 = {} # {cond1:[], cond2:[], ...} f = open(fname) lines = f.readlines() f.close() head_line = lines[0].strip() lst = head_line.split() colid = lst[1:] for c in colid: d2[c] = {} d4[c] = [] for line in lines[1:]: line = line.strip() lst = line.split() g = lst[0] rowid.append(g) d[g] = {} levels = lst[1:] if len(levels) != len(colid): print('Incomplete columns at row %s' % (g)) sys.exit() d3[g] = [] for i in range(len(colid)): c = colid[i] d[g][c] = float(levels[i]) d2[c][g] = float(levels[i]) d3[g].append(float(levels[i])) d4[c].append(float(levels[i])) lineno += 1 d_return = {} d_return['xy'] = d # first gene, then condition d_return['yx'] = d2 # first condition, then gene d_return['xx'] = d3 # each item is an array of gene expression levels, i.e., each item is a row d_return['yy'] = d4 # each item is an array of gene expression levels, i.e., each item is a column d_return['nrow'] = lineno - 1 d_return['ncol'] = len(colid) d_return['rowid'] = rowid d_return['colid'] = colid d4_sorted = {} for k in d4: d4_sorted[k] = sorted(d4[k], reverse=True) # largest numbers on the top d_return['yy_sorted'] = d4_sorted return d_return def get_value(s, delimit): lst = s.split(delimit) return lst[1].strip() def read_info_data(fname): ''' Read ChIP-seq data information ''' if not os.path.exists(fname): print('%s not exists.' % (fname) ) sys.exit() d = {'ID_LIST':[]} f = open(fname) lines = f.readlines() f.close() for line in lines: line = line.strip() if line == '' or line.startswith('#') or line.startswith('%'): continue if line.startswith(DATA_SYMBOL): s = line[line.rfind(DATA_SYMBOL[-1])+1:] s = s.strip() if s in d: print('make_target_tf: ID %s duplicate' % (s)) sys.exit() d[s] = {'PROTEIN_ID':'', 'PROTEN_NAME':'', 'DATA_NAME':'', 'DATA_FORMAT':'', 'DESCRIPTION':'', 'LOCATION':'', 'NOTE':''} d['ID_LIST'].append(s) if line.startswith('DESCRIPTION:'): d[s]['DESCRIPTION'] = get_value(line, ':') elif line.startswith('PROTEN_NAME:'): d[s]['PROTEN_NAME'] = get_value(line, ':') elif line.startswith('PROTEIN_ID:'): d[s]['PROTEIN_ID'] = get_value(line, ':') elif line.startswith('DATA_NAME:'): d[s]['DATA_NAME'] = get_value(line, ':') elif line.startswith('DATA_FORMAT:'): d[s]['DATA_FORMAT'] = get_value(line, ':') elif line.startswith('LOCATION:'): d[s]['LOCATION'] = get_value(line, ':') elif line.startswith('NOTE:'): d[s]['NOTE'] = get_value(line, ':') return d def get_gene_list(fname): result = [] f = open(fname) for line in f: line = line.strip() lst = line.split() result.append(lst[0]) f.close() return result def get_threshold2(lst, glb_param_dict): x = np.array(lst) x = x[x > 0] max_num = int(glb_param_dict['MAX_NUM_TARGETS']) # max number of targets for a protein percent = float(glb_param_dict['OVERFLOW_TARGETS_PERCENTAGE']) # if we have more targets than the max number, then include this percent of exceeding targets n = len(x) if n < max_num: return x[-1] else: # include some overflowing targets, but not all overflow = n - max_num keep = int(overflow * percent) index = keep + max_num return x[index] def convert_dict(d): ''' d = {tf:{cond1:[target1, target2], cond2:[...]}} result = {target:{tf:[c1,c2], tf:[c2,c3]}, ... } ''' result = {} for k in d: # k is tf vd = d[k] # vd is something like {cond1:[target1, target2], cond2:[...]} for c in vd: lst = vd[c] # a list of targets for x in lst: # x is a target if not x in result: result[x] = {k:[c]} else: if not k in result[x]: result[x][k] = [c] else: result[x][k].append(c) return result def get_tf(bind_dict, info_dict, input_dict, glb_param_dict): tf_dict = {} # key is TF, value is a list of targets:[target1, target2, target3, ...] #input_cond = input_dict['colid'] if len(input_dict) > 0: input_cond = input_dict['colid'][0] # use the first column of INPUT matrix as input (improve). INPUT is used for format BW. else: input_cond = 'NA' gene_id = np.array( bind_dict['rowid'] ) for c in bind_dict['colid']: # check each column (protein) in binding matrix. Find the protein's targets. #print(c) g2 = info_dict[c]['PROTEIN_ID'] # g2 is TF bind_val = np.array( bind_dict['yy'][c] ) # a column of values if info_dict[c]['DATA_FORMAT'].upper() == 'BW': # require more consideration in the future input_val = np.array( input_dict['yy'][input_cond] ) index = np.logical_and( np.logical_and(input_val > 0, input_val < 10000), (bind_val / input_val) > SIGNAL_INPUT_RATIO_TAU) # ignore intensities greater than 10000 as these are definitely noise elif info_dict[c]['DATA_FORMAT'].upper() == 'NARROWPEAK': tau = get_threshold2(bind_dict['yy_sorted'][c], glb_param_dict) index = bind_val >= tau else: print('make_target_tf: Data format %s not recognised. Only bw and narrowPeak are valid.' % (info_dict[c]['DATA_FORMAT'])) sys.exit() target_gene_id = gene_id[index] if g2 != '' and g2 != 'id_unknown': if not g2 in tf_dict: tf_dict[g2] = {c:list(target_gene_id)} else: tf_dict[g2][c] = list(target_gene_id) # tf_dict is a bit complicated: key is TF, value is a dictionary # where its key is condition, and value is a list of target genes. # It basically say this TF under condition c binds to a list of # target genes. d = convert_dict(tf_dict) return d def augment_dict(d, target, tf, cond_lst): ''' Enlarge d ''' if not target in d: d[target] = {tf:cond_lst} else: if not tf in d[target]: d[target][tf] = cond_lst else: cond_lst.extend(d[target][tf]) d[target][tf] = sorted(list(set(cond_lst))) def target_tf(bind_dict, bind_info_dict, input_dict, glb_param_dict): ''' Print lines in this format: target TF ChIP-seq conditions, e.g., ../Data/information/target_tf.txt For example, 'AT1G01270 AT3G46640 C0001000008426 C0001000008427 C0001000008428' The three fields are separated by TAB. The last field contains direct binding evidence, and each evidence is separated by a SPACE. ''' d = get_tf(bind_dict, bind_info_dict, input_dict, glb_param_dict) # d has the following format {target:{tf1:[c1,c2], tf2:[c2,c3]}, ... } # augment d with information from ../Data/information/target_tf_agris.txt and ../Data/information/target_tf.txt.20170629_143000 if os.path.exists('../Data/information/target_tf_agris.txt'): f = open('../Data/information/target_tf_agris.txt') lines = f.readlines() f.close() for line in lines: line = line.strip() lst = line.split('\t') if len(lst) == 3: target0 = lst[0] tf0 = lst[1] cond_lst0 = lst[2].split() augment_dict(d, target0, tf0, cond_lst0) if os.path.exists('../Data/information/target_tf.txt.20170629_143000'): f = open('../Data/information/target_tf.txt.20170629_143000') lines = f.readlines() f.close() for line in lines: line = line.strip() lst = line.split('\t') if len(lst) == 3: target0 = lst[0] tf0 = lst[1] cond_lst0 = lst[2].split() augment_dict(d, target0, tf0, cond_lst0) for target in sorted(d.keys()): tf_d = d[target] if len(tf_d) > 0: for tf in sorted(tf_d.keys()): cond_lst = sorted(list(set(tf_d[tf]))) #if len(cond_lst) > 1 and 'C0000000000001' in cond_lst: # C0000000000001 is for binding evidence from agris # cond_lst.remove('C0000000000001') print('%s\t%s\t%s' % (target, tf, ' '.join(cond_lst) ) ) ########## main ################################################## param_file = sys.argv[1] # a single prameter file parameter_for_net.txt glb_param_dict = make_global_param_dict(param_file) #print('Read binding data ...') bind_dict = read_matrix_data(glb_param_dict['BINDING_MATRIX']) bind_info_dict = read_info_data(glb_param_dict['BINDING_INFO']) if os.path.exists(glb_param_dict['INPUT_MATRIX']): input_dict = read_matrix_data(glb_param_dict['INPUT_MATRIX']) # for comparing with bw files else: input_dict = {} #print('Make target TF lines ...') target_tf(bind_dict, bind_info_dict, input_dict, glb_param_dict)