diff options
| -rw-r--r-- | Code/correlation_per_tissue.R | 2 | ||||
| -rw-r--r-- | Code/knn_classify.R | 1 | 
2 files changed, 2 insertions, 1 deletions
| diff --git a/Code/correlation_per_tissue.R b/Code/correlation_per_tissue.R index d9aadf9..0a16d4f 100644 --- a/Code/correlation_per_tissue.R +++ b/Code/correlation_per_tissue.R @@ -77,7 +77,7 @@ for (ul in unique.label) {          X           <- as.matrix(X0[, index.rnaseq])          sd.1        <- apply(X, 1, sd) # sd of each row          s0          <- apply(X, 1, function(c) sum(c==0)) # number of zeros in each row -        sd.tau      <- (quantile(sd.1)[1] +  quantile(sd.1)[2]) / 2.0 # min SD +        sd.tau      <- (quantile(sd.1, na.rm=TRUE)[1] +  quantile(sd.1, na.rm=TRUE)[2]) / 2.0 # min SD          good        <- sd.1 > max(sd.tau, 0.05)          tf_good     <- which( good & (all_genes %in% tfs) == T )          target_good <- which( good & (all_genes %in% targets) == T ) diff --git a/Code/knn_classify.R b/Code/knn_classify.R index 46df992..995ae7b 100644 --- a/Code/knn_classify.R +++ b/Code/knn_classify.R @@ -39,6 +39,7 @@ rowsum.tau <- dim(X)[2]       # the gene's TPM value is at least 1 on average  sd.val     <- apply(X, 1, sd)  sd.tau     <- summary(sd.val)[3] # genes whose gene expression varies least are to be filtered  index <- rowSums(X) > rowsum.tau & sd.val > 10 +index[is.na(index)] <- FALSE  n.train <- dim(X)[2]  X.3 <- log(cbind(X[index,], X.2[index,]) + 1) | 
